• **Chapter 4-Carbohydrates**

 • Sugars, Starches, and Fibers

 • Introduction

 • Brain

 – Glucose

 • Muscles

 – Glucose

 – Glycogen

 – Fat

 • Sources of carbohydrates

 • “Fattening” – mistaken thinking

 • Carbohydrate Family

 — **Simple Carbohydrates**

 — **Monosaccharides**

 • Glucose

 • Fructose

 • Galactose

 — **Disaccharides**

 • Maltose

 • Sucrose

 • Lactose

 • **Complex Carbohydrates**

 — **Polysaccharides**

 • Starches and fibers

 • Chemist’s View of Carbohydrates
• Simple Carbohydrates

• Monosaccharides
 – C₆H₁₂O₆
 • Glucose
 • Fructose
 • Galactose

• The Simple Carbohydrates

• **Monosaccharides** are single sugars
 – **Glucose**:
 • essential energy source
 • blood sugar or dextrose.
 – **Fructose**:
 • is the sweetest
 • occurs naturally in honey and fruits
 • added to many foods in the form of high-fructose corn syrup.
 – **Galactose** rarely occurs naturally as a single sugar.

• The Simple Carbohydrates

• **Disaccharides**:
 • pairs of monosaccharides
 • one of which is always glucose
 – **Maltose**:
 • consists of two glucose units.
 – **Sucrose**:
 • fructose and glucose combined.
 • refined from sugarcane and sugar beets
- tastes sweet, and is readily available.
 - **Lactose**
 - galactose and glucose combined
 - found in milk and milk products.
- **Simple Carbohydrates**
 - **Condensation:**
 - reactions link monosaccharides together.
 - **Hydrolysis:**
 - reactions split molecules and commonly occur during digestion.
- Condensation
- Other Chemical Structures
- Major Sugars
- Hydrolysis
- **The Complex Carbohydrates**

Polysaccharides
- **Glycogen**-
 - Storage form of glucose in the animal body
 - Rapid release of energy when needed
- **Starches**-
 - Storage form of glucose in plants
 - Found in grains, tubers and legumes
- **Fibers**-
 - Structure in stems, roots, trunks, leaves of plants
- **The Complex Carbohydrates**
- **Dietary fibers**
– Provide structure in plants
– Found in all plant foods
 • Vegetables, fruits, whole grains, legumes
– Cannot be broken down by human enzymes
 • A Whole Wheat Plant and a Single Kernel
• Chemist’s View of Carbohydrates
• Polysaccharides
 – Fibers
 • Soluble fibers – benefits
 • Insoluble fibers – benefits
 • Functional fibers
 • Resistant starches
 • Phytic acid
• Complex Carbohydrates

Soluble fibers
 • Dissolve in water, form gels (viscous)
 • Can be digested by colonic bacteria
 • Found in oats, barley, citrus fruits, and legumes.
 • Protect against heart disease and diabetes
 • Complex Carbohydrates

Insoluble fibers
 • Are nonviscous
 • Not digested by intestinal bacteria.
 • Found in whole grains (bran) and vegetables
 • Help promote bowel movements, alleviate constipation and prevent diverticulitis
• Complex Carbohydrates

• Functional fibers
 – are health-benefiting fibers that are added to foods or supplements.

• Resistant starches
 – escape digestion
 – found in legumes, raw potatoes

• Phytic acid or phytate
 – found in foods with fiber
 – binds some minerals such as zinc, iron, calcium.

• Fibers

• Cellulose-
 – Plant cell walls
 – Found in fruits, vegetables and legumes

• Hemicellulose-
 – Main constituent of cereal fibers

• Pectins-
 – Found in vegetables, fruits
 – Used in food industry as a thickener

• Gums and Mucilages-
 – Secreted from plants
 – Thicken processed foods

• Lignin-
 – Nonpolysaccharide fiber
 – Woody part of vegetables, carrots, small seeds
 – Carbohydrate Digestion in the GI Tract
• **Carbohydrate in Food Becomes Glucose in the Body**

• **Absorption of Monosaccharides**

• **Digestion and Absorption of Carbohydrates**

• **Lactose Intolerance**

 – **Symptoms:**

 • include bloating,

 • abdominal discomfort

 • and diarrhea.

 – **Causes:**

 • Lactase decreases with aging

 • damaged intestinal villi.

 – **Prevalence**

 • Lowest in Scandinavians and northern Europeans

 • Highest in Southeast Asians and Native Americans, African Americans, Mediterranean peoples

• **Digestion and Absorption of Carbohydrates**

• **Lactose Intolerance - Dietary Changes**

 – Increase consumption of milk products gradually.

 – Mix dairy with other foods.

 – Spread dairy intake throughout the day.

 – Use of acidophilus milk, yogurt, and kefir (fermented products)

 – Use of enzymes

 – Individualization of diets

 – Careful to avoid vitamin and mineral deficiencies

• **Preview**

 Carbohydrate Metabolism
How do we store glucose?

Storing glucose as glycogen

- When you have adequate glucose supply-
 - liver makes glycogen from extra glucose and stores it
- When your blood glucose is low-
 - liver breaks glycogen into glucose and releases it into the bloodstream
- Liver stores 1/3 of the body’s total glycogen
- Muscle cells store the rest (2/3), which is used in exercise
- Preview-Carbohydrate Metabolism

Using glucose for energy

- Used for energy in most body cells
- Glucose is converted to energy inside the cell
- Preferred energy source for the brain, nerve cells and developing red blood cells
- Carbohydrate Metabolism
- **Making glucose from protein**
 - Glucose is the preferred energy for brain cells, nerve cells, and developing red blood cells
 - When the glucose supply is inadequate-the body’s protein is broken down to make glucose via **gluconeogenesis**
 - **Having adequate dietary carbohydrate can prevent this process**
- Carbohydrate Metabolism

What happens with inadequate carbohydrate?

Making ketone bodies from fat fragments

- With inadequate carbohydrate, fat breakdown increases
- Fat fragments form ketone bodies
 - are then used for energy
• When ketone production exceeds use,
 – ketosis occurs, disturbing the body’s acid-base balance
• 50-100 grams of CHO are needed to prevent ketosis
• Carbohydrate Metabolism

What about too much carbohydrate?

Converting Glucose to Fat

• When glycogen stores are full
 – Excess carbohydrate is converted to fat.
• The liver makes triglyceride (fat) from excess glucose, which is then stored in fat cells
• Glucose in the Body
• The Constancy of Blood Glucose
 – Maintaining Glucose Homeostasis
 • Cells depend on glucose for fuel
 • Low blood glucose
 – may cause dizziness and weakness
 • High blood glucose
 – may cause fatigue.
• Extreme fluctuations can be fatal.
• Normal blood glucose (fasting): 70-100 mg/dl
• Balanced meals help maintain normal blood glucose - Complex carbohydrates, fiber, protein, and fat
• Glucose in the Body
• The Constancy of Blood Glucose
 – The Regulating Hormones
 • Insulin
 – moves glucose into the cells
- helps to lower blood sugar levels.

- **Glucagon**
 - brings glucose out of storage
 - raises blood sugar levels.

- **Epinephrine**
 - acts quickly to bring glucose out of storage during times of stress.

- **Glucose in the body**
 - Balance glucose within the normal range
 - by eating balanced meals regularly with adequate complex carbohydrates.

 - Blood glucose can fall outside the normal range with hypoglycemia or diabetes.

- **Glucose in the Body**
- **The Constancy of Blood Glucose**
 - **Diabetes- blood glucose remains high after a meal**
 - Type 1 diabetes
 - is the less common type with no insulin produced by the body.
 - Type 2 diabetes
 - is the more common type where fat cells resist insulin.
 - Prediabetes
 - is blood glucose that is higher than normal but below the diagnosis of diabetes.
 - **Hypoglycemia**
 - is low blood glucose and can often be controlled by dietary changes.

- **Glucose in the Body**
- **The Glycemic Response**
how quickly the blood glucose rises after a person eats and how quickly it returns to normal

- Glycemic index classifies foods according to their potential for raising blood glucose.
- Glycemic load refers to a food’s glycemic index and the amount of carbohydrate the food contains.
- The benefit of the glycemic index is controversial.

Nutrient Deficiencies

- “Empty Calories” - extra added sugar with limited nutrients
 - Examples: candy, cake, soda
- Added sugars include:
 - honey, corn syrup, dextrose, corn sweetener, molasses, brown sugar, high fructose corn syrup, confectioners sugar, dextrose, maltose, raw sugar, fructose
 - Naturally occurring sugars from fruits, vegetables and milk are acceptable sources.
 - The Empty Calories of Sugar

Dental Caries

- Bacteria in the mouth ferment sugar and produce acid which dissolves tooth enamel
- Related to:
 - how long sugar stays in the mouth
 - how often teeth are exposed
- Bacteria produce acid 20-30 minutes after each exposure
- Health Effects of Sugars
• **Prevention of Dental Caries:**
 - Eat sugary foods with meals
 - Limit between meal sugary snacks
 - Rinse with water if unable to brush
 - Brush and floss regularly

• **Accusations Against Sugar**

• **Does sugar cause obesity?**
 Excessive sugar intake can contribute to the development of body fat. Excess **total** intake vs output will lead to obesity
 20 oz soda has 17 tsp sugar - over 250 kcalories
 1 can per day = 26 pounds per year

• **Does sugar cause heart disease?**
 Sugar may be able to alter blood lipid levels and contribute to heart disease in some.

• **Accusations against sugar**

• **Does sugar cause misbehavior in children and criminal behavior in adults?**
 There is no scientific evidence that sugar causes misbehavior in children and criminal behavior in adults

• **Does sugar cause cravings and addictions?**
 There is a theory that sugar increases serotonin levels, which can lead to cravings and addictions.

• **Recommended Intakes of Sugar**

• **DRI**
 - No more than 25% of total energy intake

• **World Health Organization and Food and Agriculture Organization** recommend:
 - Restrict your consumption of added sugar less than 10% of your total energy intake

• **Recommended Intakes of Sugar**
• 1 tsp sugar =
 – 1 tsp brown sugar
 – 1 tsp candy
 – 1 tsp corn sweetener or corn syrup
 – 1 tsp honey
 – 1 tsp jam or jelly
 – 1 tsp maple sugar or maple syrup
 – 1 tsp molasses
 – 1 ½ tsp carbonated soda
 – 1 tbsp catsup

• Recommended Intakes of Sugar

• Each of these provide about 500 kcalories
 – 40 oz cola
 – ½ cup honey
 – 125 jelly beans
 – 23 marshmallows
 – 30 teaspoons of sugar
 – Alternative Sweeteners

• Artificial sweeteners
 – Non-nutritive sweeteners
 – Large doses and adverse effects

• Stevia – an herbal product
 – Generally recognized as safe (GRAS)

• Sugar alcohols
 – Provide kcalories
– Benefits and side effects

• Health Effects and Recommended Intakes of Starch and Fibers

• Heart Disease
 – May be some protection from heart disease and stroke
 • Whole grains and soluble fibers
 • Soluble fibers bind with bile acids (which are made from cholesterol) and thereby lower blood cholesterol levels.
 • Eating 5-10 grams of soluble fiber daily reduces blood cholesterol by 3-5%

• Health Effects of Starch and Fiber

• Diabetes
 – Reduce the risk of type 2 diabetes by decreasing glucose absorption

• GI Health
 – Enhance the health of the GI tract
 – Insoluble fiber increases stool weight and reduces transit time
 – Alleviate constipation
 – Prevent hemorrhoids
 – Prevent diverticula

• Health Effects and Recommended Intakes of Starch and Fibers

• Cancer
 – Protects against colon cancer
 • binding and removing potential cancer-causing agents

• Weight Control
 – Provide less fat and added sugar
 – Feeling of fullness
 – Increased satiety
 – Decrease food intake
• Health Effects of a High Fiber Diet
• Harmful Effects-
 – Abdominal discomfort, gas, diarrhea, obstruction
• Recommendations:
 • Increase fiber gradually over several weeks
 • Increase fluids
 • Eat a variety- Fruits, vegetables, legumes, whole grain breads and cereals
• Recommended Intakes of Starch & Fibers
 • DRI for carbohydrates
 – 45 to 65% of energy requirement
 • RDA for carbohydrates
 – 130 grams per day
 – DV is 300 grams per day
• Health Effects and Recommended Intakes of Starch and Fibers
• Recommended Intakes of Fiber
 – FDA sets the Daily Value:
 • 25 grams for a 2,000-kcalorie diet.
 • Based on 11.5 grams per 1000-kcalories
 – DRI is 14 g per 1000 kcalorie intake
 • (28 grams for a 2,000 kcalorie diet)
 – World Health Organization suggests no more than 40 g per day.
 – No UL
• Highlight 4
• Carbs, kCalories, and Controversies
• Sugars’ Share in the Problem
• Increase in consumption of added sugars
 – High-fructose corn syrup
 – Body fat stores
• Carbohydrate cravings
 – Self-imposed labeling of foods
• Carbohydrate addictions
 – Not physiological or pharmacological
• Carbohydrates’ kCalorie Contributions
• Obesity and the link to carbohydrates
 – Total daily energy intakes have increased
 – Activity levels have declined
 – Increase in body weight
• Epidemiological studies
 – Inverse relationship between carbs & weight
• Weight loss
 – kCalorie intake
• Sugars’ Share in the Problem
• Simple to swallow
 – Sweetened beverages
• Appetite control
 – Fructose and insulin
 • Flaws in plausibility
 – Food form – liquid or solid
• Energy regulation
• Insulin’s Response
• Surge of insulin levels
• Glycemic effect
 – Factors impacting glycemic effect
 • Glycemic index and body weight
• Insulin resistance
 – Fructose
 • Prediabetes and metabolic syndrome
• Body’s insulin response