Energy Metabolism
Chapter 7
Simple Overview of Energy Metabolism

The sum of all chemical reactions that go on in living cells
Introduction

- Energy
 - Heat - body temperature
 - Mechanical - moves muscles
 - Electrical - sends nerve impulses
 - Chemical -
 - Stored in food and body

- Metabolism
 - Release of energy, water, and carbon dioxide
Chemical Reactions

- Building Reactions – Anabolism
 - Require energy

- Breakdown Reactions – Catabolism
 - Release energy
A Typical Cell

Inside the cell membrane lies the cytoplasm, a lattice-type structure that supports and controls the movement of the cell’s structures. A protein-rich jelly-like fluid called cytosol fills the spaces within the lattice. The cytosol contains the enzymes involved in glycolysis.¹

A separate inner membrane encloses the cell’s nucleus.

Inside the nucleus are the chromosomes, which contain the genetic material DNA.

Known as the “powerhouses” of the cells, the mitochondria are intricately folded membranes that house all the enzymes involved in the conversion of pyruvate to acetyl CoA, fatty acid oxidation, the TCA cycle, and the electron transport chain.²

This network of membranes is known as smooth endoplasmic reticulum—the site of lipid synthesis.

A membrane encloses each cell’s contents and regulates the passage of molecules in and out of the cell.

Rough endoplasmic reticulum is dotted with ribosomes—the site of protein synthesis.³

¹Glycolysis is introduced on p. 211.
²The conversion of pyruvate to acetyl CoA, fatty acid oxidation, the TCA cycle, and the electron transport chain are described later in the chapter.
³Figure 6-7 on p. 179 describes protein synthesis.

http://nutrition jbpub.com/animations/animations.cfm?id=16&debug=0
The Metabolic Work of the Liver

Table 7-1 Metabolic Work of the Liver

The liver is the most active processing center in the body. When nutrients enter the body from the digestive tract, the liver receives them first; then it metabolizes, packages, stores, or ships them out for use by other tissues. When alcohol, drugs, or poisons enter the body, they are also sent directly to the liver; here they are detoxified and their by-products shipped out for excretion. An enthusiastic anatomy and physiology professor once remarked that given the many vital activities of the liver, we should express our feelings for others by saying, “I love you with all my liver” instead of “with all my heart.” Granted, this declaration lacks romance, but it makes a valid point. Here are just some of the many jobs performed by the liver. To renew your appreciation for this remarkable organ, review Figure 3-11 (p. 81).

<table>
<thead>
<tr>
<th>Carbohydrates</th>
<th>Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolizes fructose,</td>
<td>Manufactures nonessential amino acids that are in</td>
</tr>
<tr>
<td>galactose, and glucose</td>
<td>short supply</td>
</tr>
<tr>
<td>Makes and stores glucose</td>
<td>Removes from circulation amino acids that are</td>
</tr>
<tr>
<td>Breaks down glycogen</td>
<td>present in excess of need and converts them to</td>
</tr>
<tr>
<td>and releases glucose</td>
<td>other amino acids or deaminates them and converts</td>
</tr>
<tr>
<td>Breaks down glucose</td>
<td>them to glucose or fatty acids</td>
</tr>
<tr>
<td>for energy when needed</td>
<td>Removes ammonia from the blood and converts it to</td>
</tr>
<tr>
<td></td>
<td>urea to be sent to the kidneys for excretion</td>
</tr>
<tr>
<td>Makes glucose from</td>
<td>Makes other nitrogen-containing compounds the</td>
</tr>
<tr>
<td>some amino acids and</td>
<td>body needs (such as bases used in DNA and RNA)</td>
</tr>
<tr>
<td>glycerol when needed</td>
<td>Makes many proteins</td>
</tr>
<tr>
<td>Converts excess glucose</td>
<td></td>
</tr>
<tr>
<td>and fructose to fatty</td>
<td></td>
</tr>
<tr>
<td>acids</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lipids</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Builds and breaks down</td>
<td>Detoxifies alcohol, other drugs, and poisons;</td>
</tr>
<tr>
<td>triglycerides,</td>
<td>prepares waste products for excretion</td>
</tr>
<tr>
<td>phospholipids, and</td>
<td>Helps dismantle old red blood cells and captures</td>
</tr>
<tr>
<td>cholesterol as needed</td>
<td>the iron for recycling</td>
</tr>
<tr>
<td>Breaks down fatty acids</td>
<td>Stores most vitamins and many minerals</td>
</tr>
<tr>
<td>for energy when needed</td>
<td>Activates vitamin D</td>
</tr>
<tr>
<td>Packages lipids in</td>
<td></td>
</tr>
<tr>
<td>lipoproteins for</td>
<td></td>
</tr>
<tr>
<td>transport to other body</td>
<td></td>
</tr>
<tr>
<td>tissues</td>
<td></td>
</tr>
<tr>
<td>Manufactures bile to</td>
<td></td>
</tr>
<tr>
<td>send to the gallbladder</td>
<td></td>
</tr>
<tr>
<td>for use in fat</td>
<td></td>
</tr>
<tr>
<td>digestion</td>
<td></td>
</tr>
<tr>
<td>Makes ketone bodies</td>
<td></td>
</tr>
<tr>
<td>when necessary</td>
<td></td>
</tr>
</tbody>
</table>

Table 7-1, p. 207
Anabolic and Catabolic Reactions Compared

ANABOLIC REACTIONS

- **Glycogen**
 - Uses energy
 - Glucose + Glucose

- **Triglycerides**
 - Uses energy
 - Glycerol + Fatty acids

- **Protein**
 - Uses energy
 - Amino acids + Amino acids

Anabolic reactions include the making of glycogen, triglycerides, and protein; these reactions require differing amounts of energy.

CATABOLIC REACTIONS

- **Glycogen**
 - Yields energy
 - Glucose

- **Triglycerides**
 - Glycerol
 - Fatty acids
 - Yields energy

- **Protein**
 - Amino acids
 - Yields energy

Catabolic reactions include the breakdown of glycogen, triglycerides, and protein; the further catabolism of glucose, glycerol, fatty acids, and amino acids releases differing amounts of energy. Much of the energy released is captured in the bonds of adenosine triphosphate (ATP).

NOTE: You need not memorize a color code to understand the figures in this chapter, but you may find it helpful to know that blue is used for carbohydrates, yellow for fats, and red for proteins.
Chemical Reactions in the Body

Energy released during the breakdown of glucose, fatty acids, and amino acids is often captured by ATP- a high energy compound.
Capture and Release of Energy by ATP

1. Energy is released when a high-energy phosphate bond in ATP is broken. Just as a battery can be used to provide energy for a variety of uses, the energy from ATP can be used to do most of the body’s work—contract muscles, transport compounds, make new molecules, and more. With the loss of a phosphate group, high-energy ATP (charged battery) becomes low-energy ADP (used battery).

2. Energy is required when a phosphate group is attached to ADP, making ATP. Just as a used battery needs energy from an electrical outlet to get recharged, ADP (used battery) needs energy from the breakdown of carbohydrate, fat, and protein to make ATP (recharged battery).
Chemical Reactions in the Body

- Enzymes
 - Facilitators of metabolic reactions
- Coenzymes
 - Organic
 - Associate with enzymes
 - Without coenzyme, an enzyme cannot function
Breaking Down Nutrients for Energy

- **Digestion**
 - Carbohydrates – glucose (& other monosaccharides)
 - Fats (triglycerides) – glycerol and fatty acids
 - Proteins – amino acids

- **Molecules of glucose, glycerol, amino acids, and fatty acids**

- **Catabolism**
 - Carbon, nitrogen, oxygen, hydrogen
Breaking Down Nutrients for Energy

Glucose

Fatty Acid

Amino Acid
Breaking Down Nutrients for Energy

1. All of the energy-yielding nutrients—protein, carbohydrate, and fat—can be broken down to acetyl CoA.
2. Acetyl CoA can enter the TCA cycle.
3. Most of the reactions above release hydrogen atoms with their electrons, which are carried by coenzymes to the electron transport chain.
4. ATP is synthesized.
5. Hydrogen atoms react with oxygen to produce water.
Breaking Down Nutrients for Energy

- Two new compounds
 - Pyruvate
 - 3-carbon structure
 - Can be used to make glucose
 - Acetyl CoA
 - 2-carbon structure
 - Cannot be used to make glucose
- TCA cycle and electron transport chain
Breaking Down Nutrients for Energy

- Amino acids and glycerol can be converted to pyruvate and therefore glucose
 - Needed for CNS and red blood cells
 - Without glucose, body will break down lean tissue
 - Adequate carbohydrate prevents this

- Fatty acids are converted to Actyl CoA
 - Cannot be used to make glucose
 - Readily can make fat
Breaking Down Nutrients for Energy -- Glucose

- Glycolysis (glucose splitting) is the first step for glucose on its pathway to yielding energy.
- Glucose is converted to pyruvate
- Pyruvate can be converted back to glucose
- Glycolysis occurs in the cytoplasm of the cell
A little ATP is used to start glycolysis.

Galactose and fructose enter glycolysis at different places, but all continue on the same pathway.

In a series of reactions, the 6-carbon glucose is converted to other 6-carbon compounds, which eventually split into two interchangeable 3-carbon compounds.

A little ATP is produced, and coenzymes carry the hydrogens and their electrons to the electron transport chain.

The 3-carbon compounds go through a series of conversions, producing another 3-carbon compound, each slightly different.

Eventually, the 3-carbon compounds are converted to pyruvate. Glycolysis of one molecule of glucose produces two molecules of pyruvate.

NOTE: These arrows point down indicating the breakdown of glucose to pyruvate during energy metabolism. (Alternatively, the arrows could point up indicating the making of glucose from pyruvate, but that is not the focus of this discussion.)
Glycolysis

Glucose → 2 Pyruvate

Energy released

To be continued...
Breaking Down Nutrients for Energy – Glucose

- Pyruvate’s options - Anaerobic or Aerobic
 - Quick energy needs –
 - Pyruvate is converted to lactate
 - Does not require oxygen- \textit{anaerobic}
 - Sustained for just a few minutes
 - Slower energy needs –
 - Pyruvate-to-acetyl CoA
 - Oxygen requiring- \textit{aerobic}
Glucose Retrieval via the Cori Cycle

- When less oxygen is available
 - Pyruvate is converted to lactic acid.
- Occurs during high-intensity exercise
 - Exceeds the body’s ability to delivery oxygen to the muscles and clear the CO₂.
- Lactic acid accumulates in muscles
 - May experience burning pain and fatigue.
- Lactic acid travels to the liver
 - The liver converts it back to glucose
 - This is called the Cori cycle
Pyruvate-to-Lactate (Anaerobic)

1. Working muscles break down most of their glucose molecules to pyruvate.

 - Glycolysis in the muscle:
 - Glucose → Coenzymes → Pyruvate
 - Yields energy (ATP)

2. If the cells lack sufficient mitochondria or in the absence of sufficient oxygen, pyruvate can accept the hydrogens from glucose breakdown and become lactate. This conversion frees the coenzymes so that glycolysis can continue.

3. Liver enzymes can convert lactate to glucose, but this reaction requires energy.

 - In the liver:
 - Glucose returns to the muscles
 - Glucose uses energy (ATP)
Pyruvate-To-Acetyl CoA

- If the cell needs energy, and oxygen is available
 - pyruvate enters the mitochondria,
 - where a carbon group is removed and the remaining compound combines with Co-enzyme A
 - produce 2 acetyl CoA.

- This is an aerobic reaction (oxygen requiring)

http://nutrition.jbpub.com/animations/animations.cfm?id=17&debug=0
Breaking Down Nutrients for Energy

1. All of the energy-yielding nutrients—protein, carbohydrate, and fat—can be broken down to acetyl CoA.
2. Acetyl CoA can enter the TCA cycle.
3. Most of the reactions above release hydrogen atoms with their electrons, which are carried by coenzymes to the electron transport chain.
4. ATP is synthesized.
5. Hydrogen atoms react with oxygen to produce water.
The Paths of Pyruvate and Acetyl CoA

NOTE: Amino acids that can be used to make glucose are called glucogenic; amino acids that are converted to acetyl CoA are called ketogenic.
Fats to Energy

- Triglyceride breaks down to glycerol and fatty acids.

Glycerol
- Can be converted to pyruvate and go down the pathway
- It can go up the pathway and be converted to glucose.

Fatty acids are broken into 2-carbon units which combine with CoA to make acetyl CoA.
- Fatty Acids cannot be used to make glucose
Fats Enter the Energy Pathway

1. Glycerol enters the glycolysis pathway about midway between glucose and pyruvate.

2. Fatty acids are broken down into 2-carbon fragments that combine with CoA to form acetyl CoA (shown in Figure 7-11).

REVIEW IT 16-carbon fatty acid yields 8 acetyl CoA.
Simplified Overview of Energy-Yielding Pathways

1. All of the energy-yielding nutrients—protein, carbohydrate, and fat—can be broken down to acetyl CoA.
2. Acetyl CoA can enter the TCA cycle.
3. Most of the reactions above release hydrogen atoms with their electrons, which are carried by coenzymes to the electron transport chain.
4. ATP is synthesized.
5. Hydrogen atoms react with oxygen to produce water.
Amino Acids

- Amino acids can be converted to glucose
 - Deaminated first (remove the nitrogen amino group).
 - Can be converted to pyruvate – (glucogenic)
 - used for CNS, RBCs
 - Can be converted to acetyl CoA (ketogenic)
 - Can be used for energy or converted to fatty acids and stored as triglyceride.
 - Some enter the TCA cycle directly
Amino Acids Enter the Energy Pathway

1. Most amino acids can be converted to pyruvate, which can be used to make glucose; they are glucogenic.

2. Some amino acids are converted directly to acetyl CoA; they are ketogenic.

3. Some amino acids can enter the TCA cycle directly; they are glucogenic.

NOTE: Deamination and the synthesis of urea are discussed and illustrated in Chapter 6, Figure 6-13 (p. 180). The arrows from pyruvate and the TCA cycle to amino acids are possible only for nonessential amino acids; remember, the body cannot make essential amino acids.
Amino Acids-to-Energy Pathway
Review of Energy-Yielding Nutrient Endpoints

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Yields energy?</th>
<th>Yields glucose?</th>
<th>Yields amino acids and body proteins?</th>
<th>Yields fat stores?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates (glucose)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes—with nitrogen is available, can yield nonessential amino acids</td>
<td>Yes</td>
</tr>
<tr>
<td>Lipids (fatty acids)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Lipids (glycerol)</td>
<td>Yes</td>
<td>Yes—when carbohydrate is unavailable</td>
<td>Yes—with nitrogen is available, can yield nonessential amino acids</td>
<td>Yes</td>
</tr>
<tr>
<td>Proteins (amino acids)</td>
<td>Yes</td>
<td>Yes—when carbohydrate is unavailable</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Final Steps of Catabolism

- **TCA Cycle**
 - Inner compartment of mitochondria
 - Circular path
 - Acetyl CoA
 - Oxaloacetate – made primarily from pyruvate
 - Carbon dioxide release
 - Hydrogen atoms and their electrons
 - Niacin and riboflavin are coenzymes that are essential
The TCA Cycle

A series of metabolic reactions that break down molecules of acetyl CoA to carbon dioxide and hydrogen atoms.

The TCA Cycle reactions take place in the mitochondria of the cell.
Final Steps of Energy Metabolism

- **Electron transport chain**
 - Captures energy in ATP
 - Series of proteins
 - Electron “carriers”
 - Inner membrane of mitochondria
 - Electrons passed to next carrier
 - Join oxygen at end of chain – water released
 - ATP synthesis
Electron Transport Chain and ATP Synthesis

1. Coenzymes deliver hydrogens and high-energy electrons to the electron transport chain from the TCA cycle, glycolysis, and fatty acid oxidation.

2. Passing electrons from carrier to carrier along the chain releases enough energy to pump hydrogen ions across the membrane.

3. Oxygen accepts the electrons and combines with hydrogens to form water.

4. Hydrogen ions flow “downhill”—from an area of high concentration to an area of low concentration—through a special protein complex that powers the synthesis of ATP.

ADP + P → ATP
Final Steps of Energy Metabolism

- **kCalorie-per-gram secret**
 - Fat provides most energy per gram
 - Carbon-hydrogen bonds
 - More ATP = more kcalories

![Fatty acid](image1)

![Glucose](image2)
Central Pathways of Energy Metabolism

- All of the energy-yielding nutrients—protein, carbohydrates, and fat—can be broken down to acetyl CoA.
 - Acetyl CoA can enter the TCA cycle or it can make fat.
 - Many of these reactions release hydrogen atoms with their electrons, which are carried by coenzymes to the electron transport chain.
 - In the end, oxygen is consumed, water and carbon dioxide are produced, and energy is captured in ATP.
 - Some amino acids, pyruvate, and glycerol can be used to make glucose.
 - Fatty acids cannot be used to make glucose.
Feasting – Excess Energy

- Metabolism favors fat formation
 - Regardless of excess from protein, fat, or carbohydrates
 - Excess protein
 - Excess carbohydrate
 - Dietary fat to body fat is most direct and efficient conversion
- Fuel mix
Feasting

A. When a person overeats (feasting): When a person eats in excess of energy needs, the body stores a small amount of glycogen and much larger quantities of fat.

<table>
<thead>
<tr>
<th>Food component:</th>
<th>Is broken down in the body to:</th>
<th>And then used for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrate</td>
<td>Glucose</td>
<td>Liver and muscle glycogen stores</td>
</tr>
<tr>
<td>Fat</td>
<td>Fatty acids</td>
<td>Body fat stores</td>
</tr>
<tr>
<td>Protein</td>
<td>Amino acids</td>
<td>Loss of nitrogen in urine (urea)</td>
</tr>
</tbody>
</table>

b Alcohol is not included because it is a toxin and not a nutrient, but it does contribute energy to the body. After detoxifying the alcohol, the body uses the remaining two carbon fragments to build fatty acids and stores them as fat.
Fasting

- Glucose from liver glycogen is released
- Fatty acids from adipose tissue are released

B When a person draws on stores (fasting): When nutrients from a meal are no longer available to provide energy (about 2 to 3 hours after a meal), the body draws on its glycogen and fat stores for energy.

Storage component: Liver and muscle glycogen stores, Body fat stores

Is broken down in the body to: Glucose, Fatty acids

And then used for: Energy for the brain, nervous system, and red blood cells, Energy for other cells

The muscles' stored glycogen provides glucose only for the muscle in which the glycogen is stored.
Extended Fasting

Glucose is needed for the brain RBCs, nervous system

Brain and nerve cells use 1/2 of total glucose used each day

C If the fast continues beyond glycogen depletion: As glycogen stores dwindle (after about 24 hours of starvation), the body begins to break down its protein (muscle and lean tissue) to amino acids to synthesize glucose needed for brain and nervous system energy. In addition, the liver converts fats to ketone bodies, which serve as an alternative energy source for the brain, thus slowing the breakdown of body protein.

<table>
<thead>
<tr>
<th>Body component:</th>
<th>Is broken down in the body to:</th>
<th>And then used for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body protein</td>
<td>Loss of nitrogen in urine (urea)</td>
<td>Energy for the brain, nervous system, and red blood cells</td>
</tr>
<tr>
<td>Body fat</td>
<td>Amino acids</td>
<td>Energy for other cells</td>
</tr>
<tr>
<td></td>
<td>Glucose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ketone bodies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fatty acids</td>
<td></td>
</tr>
</tbody>
</table>
Extended Fasting

- Adaptation: make glucose
 - Breakdown of body protein meets glucose needs via **gluconeogenesis**
 - Glycerol portion of the triglyceride is used
- Adaptation: Create an alternative fuel
 - Body shifts to using ketone bodies from fat breakdown (ketosis) for brain fuel
- After about 10 days
- Appetite suppression
Energy Balance – Transition from Feasting to Fasting

A. When a person overeats (feasting): When a person eats in excess of energy needs, the body stores a small amount of glycogen and much larger quantities of fat.

<table>
<thead>
<tr>
<th>Food component</th>
<th>Is broken down in the body to:</th>
<th>And then used for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>Glucose</td>
<td>Liver and muscle glycogen stores</td>
</tr>
<tr>
<td>Fat</td>
<td>Fatty acids</td>
<td>Body fat stores</td>
</tr>
<tr>
<td>Protein</td>
<td>Amino acids</td>
<td>Loss of nitrogen in urine (urea)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Body proteins</td>
</tr>
</tbody>
</table>

B. When a person draws on stores (fasting): When nutrients from a meal are no longer available to provide energy (about 2 to 3 hours after a meal), the body draws on its glycogen and fat stores for energy.

<table>
<thead>
<tr>
<th>Storage component</th>
<th>Is broken down in the body to:</th>
<th>And then used for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver and muscle glycogen stores</td>
<td>Glucose</td>
<td>Energy for the brain, nervous system, and red blood cells</td>
</tr>
<tr>
<td>Body fat stores</td>
<td>Fatty acids</td>
<td>Energy for other cells</td>
</tr>
</tbody>
</table>

C. If the fast continues beyond glycogen depletion: As glycogen stores dwindle (after about 24 hours of starvation), the body begins to break down its protein (muscle and lean tissue) to amino acids to synthesize glucose needed for brain and nervous system energy. In addition, the liver converts fats to ketone bodies, which serve as an alternative energy source for the brain, thus slowing the breakdown of body protein.

<table>
<thead>
<tr>
<th>Body component</th>
<th>Is broken down in the body to:</th>
<th>And then used for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body protein</td>
<td>Loss of nitrogen in urine (urea)</td>
<td>Energy for the brain, nervous system, and red blood cells</td>
</tr>
<tr>
<td>Body fat</td>
<td>Amino acids</td>
<td>Energy for other cells</td>
</tr>
</tbody>
</table>

*Alcohol is not included because it is a toxin and not a nutrient, but it does contribute energy to the body. After detoxifying the alcohol, the body uses the remaining two carbon fragments to build fatty acids and stores them as fat.

*The muscles’ stored glycogen provides glucose only for the muscle in which the glycogen is stored.
Fasting—Inadequate Energy

- Adaptation: Conserving Energy
- Symptoms of Starvation
 - Metabolism slows
 - Muscle wasting
 - Decreased heart rate, respiratory rate, metabolic rate, and body temperature
 - Impaired vision
 - Organ failure
 - Decreased immunity
 - Depression, anxiety, and food-related dreams

© 2008 Thomson - Wadsworth
Low-Carbohydrate Diets

- Metabolism similar to fasting
 - Uses glycogen stores first
 - Gluconeogenesis when glycogen is depleted
 - Body tissues used somewhat even when protein provided in diet
- Urine monitoring
- Ketosis
Adverse Side Effects of Low-Carbohydrate, Ketogenic Diets

TABLE 7-3 Adverse Side Effects of Low-Carbohydrate, Ketogenic Diets

- Nausea
- Fatigue (especially if physically active)
- Constipation
- Low blood pressure
- Elevated uric acid (which may exacerbate kidney disease and cause inflammation of the joints in those predisposed to gout)
- Stale, foul taste in the mouth (bad breath)
- In pregnant women, fetal harm and stillbirth
Short Term Effects

- 20% of all boating fatalities
- 25% of all emergency-room admissions
- 23% of all suicides
- 47% of all homicides
- 65% of all domestic violence incidents
- 39% of all traffic fatalities
- 40% of all residential fire victim fatalities
Effects of Alcohol

- On an average day alcohol is involved in:
 - Death of 5 college students
 - Sexual assault of 266 college students
 - Injury of 1641 college students
 - Assault of 1907 college students
Alcohol in Beverages

- Beer, wine and distilled liquor (hard liquor)
- Alcohol behaves like a drug, therefore altering body functions.
- Moderation of drinks
 - 1 drink per day for women
 - 2 drinks per day for men
 - 5 ounces of wine
 - 10 ounces of wine cooler
 - 12 ounces of beer
 - 1 ½ ounces distilled liquor (80 proof)
Alcohol in the Body

- Alcohol’s special privileges
 - No digestion
 - Quick absorption

- Stomach
 - Alcohol dehydrogenase (women produce less)
 - Food slows absorption

- Small intestine
 - Priority over nutrients
Alcohol Arrives in the Liver

- Liver cells
 - First to receive alcohol-laden blood
- Alcohol dehydrogenase
- Disrupts liver activity
- Fatty acids accumulate
- Uses up Niacin coenzyme
- Can permanently change liver cell structure
- Rate of alcohol metabolism
 - ½ ounce per hour
Acetyl CoA molecules are blocked from getting into the TCA cycle by the high level of NADH. Instead of being used for energy, the acetyl CoA molecules become building blocks for fatty acids.
Alcohol Disrupts the Liver

- Development of a fatty liver is the first stage of liver deterioration.
- Fibrosis is the second stage (scar tissue)
- Cirrhosis is the most advanced stage of liver deterioration.
Metabolic Work of the Liver

TABLE 7-1 Metabolic Work of the Liver

The liver is the most active processing center in the body. When nutrients enter the body from the digestive tract, the liver receives them first; then it metabolizes, packages, stores, or ships them out for use by other tissues. When alcohol, drugs, or poisons enter the body, they are also sent directly to the liver; here they are detoxified and their by-products shipped out for excretion. An enthusiastic anatomy and physiology professor once remarked that given the many vital activities of the liver, we should express our feelings for others by saying, "I love you with all my liver" instead of "with all my heart." Granted, this declaration lacks romance, but it makes a valid point. Here are just some of the many jobs performed by the liver. To renew your appreciation for this remarkable organ, review Figure 3-11 (p. 81).

Carbohydrates
- Metabolizes fructose, galactose, and glucose
- Makes and stores glycogen
- Breaks down glycogen and releases glucose
- Breaks down glucose for energy when needed
- Makes glucose from some amino acids and glycerol when needed
- Converts excess glucose and fructose to fatty acids

Proteins
- Manufactures nonessential amino acids that are in short supply
- Removes from circulation amino acids that are present in excess of need and converts them to other amino acids or deaminates them and converts them to glucose or fatty acids
- Removes ammonia from the blood and converts it to urea to be sent to the kidneys for excretion
- Makes other nitrogen-containing compounds the body needs (such as bases used in DNA and RNA)
- Makes many proteins

Lipids
- Builds and breaks down triglycerides, phospholipids, and cholesterol as needed
- Breaks down fatty acids for energy when needed
- Packages lipids in lipoproteins for transport to other body tissues
- Manufactures bile to send to the gallbladder for use in fat digestion
- Makes ketone bodies when necessary

Other
- Detoxifies alcohol, other drugs, and poisons; prepares waste products for excretion
- Helps dismantle old red blood cells and captures the iron for recycling
- Stores most vitamins and many minerals
- Activates vitamin D
Alcohol Arrives in the Brain

- Alcohol acts as a narcotic, anesthetizes pain
- Sedates inhibitory nerves
- Depressant; affects all nerves
- Alcohol suppresses antidiuretic hormone (ADH) resulting in the loss of body water.
- Brain cells die with excessive alcohol exposure
1. Judgment and reasoning centers are most sensitive to alcohol. When alcohol flows to the brain, it first sedates the frontal lobe, the center of all conscious activity. As the alcohol molecules diffuse into the cells of these lobes, they interfere with reasoning and judgment.

2. Speech and vision centers in the midbrain are affected next. If the drinker drinks faster than the rate at which the liver can oxidize the alcohol, blood alcohol concentrations rise: the speech and vision centers of the brain become sedated.

3. Voluntary muscular control is then affected. At still higher concentrations, the cells in the cerebellum responsible for coordination of voluntary muscles are affected, including those used in speech, eye-hand coordination, and limb movements. At this point people under the influence stagger or weave when they try to walk, or they may slur their speech.

4. Respiration and heart action are the last to be affected. Finally, the conscious brain is completely subdued, and the person passes out. Now the person can drink no more; this is fortunate because higher doses would anesthetize the deepest brain centers that control breathing and heartbeat, causing death.
Alcohol Doses & Approximate Blood Level Percentages for Men & Women

<table>
<thead>
<tr>
<th>Drinks</th>
<th>Body Weight in Pounds—Men</th>
<th>Drinks</th>
<th>Body Weight in Pounds—Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>1</td>
<td>.04</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>2</td>
<td>.08</td>
<td>.06</td>
<td>.05</td>
</tr>
<tr>
<td>3</td>
<td>.11</td>
<td>.09</td>
<td>.08</td>
</tr>
<tr>
<td>4</td>
<td>.15</td>
<td>.12</td>
<td>.11</td>
</tr>
<tr>
<td>5</td>
<td>.19</td>
<td>.16</td>
<td>.13</td>
</tr>
<tr>
<td>7</td>
<td>.26</td>
<td>.22</td>
<td>.19</td>
</tr>
<tr>
<td>9</td>
<td>.34</td>
<td>.28</td>
<td>.24</td>
</tr>
<tr>
<td>10</td>
<td>.38</td>
<td>.31</td>
<td>.27</td>
</tr>
</tbody>
</table>

NOTE: Driving under the influence is proved when an adult's blood contains 0.08 percent alcohol. Many states have adopted a “zero-tolerance” policy for drivers under age 21, using 0.00 to 0.02 percent as the limit.

*Taken within an hour or so; each drink equivalent to ½ ounce pure ethanol.

SOURCE: National Clearinghouse for Alcohol and Drug Information.
Alcohol Blood Levels and Brain Responses

<table>
<thead>
<tr>
<th>Blood Alcohol Concentration</th>
<th>Effect on Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>Impaired judgment, relaxed inhibitions, altered mood, increased heart rate</td>
</tr>
<tr>
<td>0.10</td>
<td>Impaired coordination, delayed reaction time, exaggerated emotions, impaired peripheral vision, impaired ability to operate a vehicle</td>
</tr>
<tr>
<td>0.15</td>
<td>Slurred speech, blurred vision, staggered walk, seriously impaired coordination and judgment</td>
</tr>
<tr>
<td>0.20</td>
<td>Double vision, inability to walk</td>
</tr>
<tr>
<td>0.30</td>
<td>Uninhibited behavior, stupor, confusion, inability to comprehend</td>
</tr>
<tr>
<td>0.40 to 0.60</td>
<td>Unconsciousness, shock, coma, death (cardiac or respiratory failure)</td>
</tr>
</tbody>
</table>

NOTE: Blood alcohol concentration depends on a number of factors, including alcohol in the beverage, the rate of consumption, the person's gender, and body weight. For example, a 100-pound female can become legally drunk (≥0.10 concentration) by drinking three beers in an hour, whereas a 220-pound male consuming that amount at the same rate would have a 0.05 blood alcohol concentration.
Alcohol and Malnutrition

- Heavy drinkers may have inadequate food intake.
- Impaired nutrient metabolism will result from chronic alcohol abuse.
- Vitamin B_6, folate, thiamin deficiencies
- Wernicke-Korsakoff syndrome is seen in chronic alcoholism.
Alcohol’s Effect on Vitamin Absorption

- **Food in digestive tract**
- **Intestinal cells**
- **Body tissue**

- Thiamin in food can’t be absorbed
- Thiamin supplement (high concentration)

- Alcohol affects vitamin absorption. Some gets into body.
Alcohol’s Long-Term Effects

- Abuse during pregnancy
- Third leading cause of preventable death
TABLE H7-5 Health Effects of Heavy Alcohol Consumption

<table>
<thead>
<tr>
<th>Health Problem</th>
<th>Effects of Alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthritis</td>
<td>Increases the risk of inflamed joints.</td>
</tr>
<tr>
<td>Cancer</td>
<td>Increases the risk of cancer of the liver, breast, mouth, pharynx, larynx, esophagus, colon, and rectum.</td>
</tr>
<tr>
<td>Fetal alcohol syndrome</td>
<td>Causes physical and behavioral abnormalities in the fetus (see Highlight 15).</td>
</tr>
<tr>
<td>Heart disease</td>
<td>In heavy drinkers, raises blood pressure, blood lipids, and the risk of stroke and heart disease; when compared with those who abstain, heart disease risk is generally lower in light-to-moderate drinkers.</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>Raises blood glucose.</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>Lowers blood glucose, especially in people with diabetes.</td>
</tr>
<tr>
<td>Infertility</td>
<td>Increases the risks of menstrual disorders and spontaneous abortions (in women); suppresses luteinizing hormone (in women) and testosterone (in men).</td>
</tr>
<tr>
<td>Kidney disease</td>
<td>Enlarges the kidneys, alters hormone functions, and increases the risk of kidney failure.</td>
</tr>
<tr>
<td>Liver disease</td>
<td>Causes fatty liver, alcoholic hepatitis, and cirrhosis.</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>Increases the risk of malnutrition; low intakes of protein, calcium, iron, vitamin A, vitamin C, thiamin, vitamin B₆, and riboflavin; and impaired absorption of calcium, phosphorus, vitamin D, and zinc.</td>
</tr>
<tr>
<td>Nerve disorders</td>
<td>Causes neuropathy and dementia; impairs balance and memory.</td>
</tr>
<tr>
<td>Obesity</td>
<td>Increases energy intake, but is not a primary cause of obesity.</td>
</tr>
<tr>
<td>Psychological disturbances</td>
<td>Causes depression, anxiety, and insomnia.</td>
</tr>
</tbody>
</table>

NOTE: This list is by no means all-inclusive. Alcohol has direct toxic effects on all body systems.
<table>
<thead>
<tr>
<th>Myth</th>
<th>Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myth: Liquors such as rum, vodka, and tequila are more harmful than wine and beer.</td>
<td>Truth: The damage caused by alcohol depends largely on the amount consumed. Compared with liquor, beer and wine have relatively low percentages of alcohol, but they are often consumed in larger quantities.</td>
</tr>
<tr>
<td>Myth: Consuming alcohol with raw seafood diminishes the likelihood of getting hepatitis.</td>
<td>Truth: People have eaten contaminated oysters while drinking alcoholic beverages and not gotten as sick as those who were not drinking. But do not be misled: hepatitis is too serious an illness for anyone to depend on alcohol for protection.</td>
</tr>
<tr>
<td>Myth: Alcohol stimulates the appetite.</td>
<td>Truth: For some people, alcohol may stimulate appetite, but it seems to have the opposite effect in heavy drinkers. Heavy drinkers tend to eat poorly and suffer malnutrition.</td>
</tr>
<tr>
<td>Myth: Drinking alcohol is healthy.</td>
<td>Truth: Moderate alcohol consumption is associated with a lower risk for heart disease. Higher intakes, however, raise the risks for high blood pressure, stroke, heart disease, some cancers, accidents, violence, suicide, birth defects, and deaths in general. Furthermore, excessive alcohol consumption damages the liver, pancreas, brain, and heart. No authority recommends that nondrinkers begin drinking alcoholic beverages to obtain health benefits.</td>
</tr>
<tr>
<td>Myth: Wine increases the body’s absorption of minerals.</td>
<td>Truth: Wine may increase the body’s absorption of potassium, calcium, phosphorus, magnesium, and zinc, but the alcohol in wine also promotes the body’s excretion of these minerals, so no benefit is gained.</td>
</tr>
<tr>
<td>Myth: Alcohol is legal and, therefore, not a drug.</td>
<td>Truth: Alcohol is legal for adults 21 years old and older, but it is also a drug—a substance that alters one or more of the body’s functions.</td>
</tr>
<tr>
<td>Myth: A shot of alcohol warms you up.</td>
<td>Truth: Alcohol diverts blood flow to the skin making you feel warmer, but it actually cools the body.</td>
</tr>
<tr>
<td>Myth: Wine and beer are mild; they do not lead to alcoholism.</td>
<td>Truth: Alcoholism is not related to the kind of beverage, but rather to the quantity and frequency of consumption.</td>
</tr>
<tr>
<td>Myth: Mixing different types of drinks gives you a hangover.</td>
<td>Truth: Too much alcohol in any form produces a hangover.</td>
</tr>
<tr>
<td>Myth: Alcohol is a stimulant.</td>
<td>Truth: People think alcohol is a stimulant because it seems to relieve inhibitions, but it does so by depressing the activity of the brain. Alcohol is medically defined as a depressant drug.</td>
</tr>
<tr>
<td>Myth: Beer is a great source of carbohydrate, vitamins, minerals, and fluids.</td>
<td>Truth: Beer does provide some carbohydrate, but most of its calories come from alcohol. The few vitamins and minerals in beer cannot compete with rich food sources. And the diuretic effect of alcohol causes the body to lose more fluid in urine than is provided by the beer.</td>
</tr>
<tr>
<td>Beverage</td>
<td>Amount (oz)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Beer</td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>12</td>
</tr>
<tr>
<td>Light</td>
<td>12</td>
</tr>
<tr>
<td>Nonalcoholic</td>
<td>12</td>
</tr>
<tr>
<td>Cocktails</td>
<td></td>
</tr>
<tr>
<td>Daiquiri, canned</td>
<td>6.8</td>
</tr>
<tr>
<td>Daiquiri, from recipe</td>
<td>4.5</td>
</tr>
<tr>
<td>Piña colada, canned</td>
<td>6.8</td>
</tr>
<tr>
<td>Piña colada, from recipe</td>
<td>4.5</td>
</tr>
<tr>
<td>Tequila sunrise, canned</td>
<td>6.8</td>
</tr>
<tr>
<td>Whiskey sour, canned</td>
<td>6.8</td>
</tr>
<tr>
<td>Liquor (gin, rum, vodka, whiskey)</td>
<td></td>
</tr>
<tr>
<td>80 proof</td>
<td>1.5</td>
</tr>
<tr>
<td>86 proof</td>
<td>1.5</td>
</tr>
<tr>
<td>90 proof</td>
<td>1.5</td>
</tr>
<tr>
<td>94 proof</td>
<td>1.5</td>
</tr>
<tr>
<td>100 proof</td>
<td>1.5</td>
</tr>
<tr>
<td>Sake</td>
<td>1.5</td>
</tr>
<tr>
<td>Liqueurs</td>
<td></td>
</tr>
<tr>
<td>Coffee and cream liqueur, 34 proof</td>
<td>1.5</td>
</tr>
<tr>
<td>Coffee liqueur, 53 proof</td>
<td>1.5</td>
</tr>
<tr>
<td>Coffee liqueur, 63 proof</td>
<td>1.5</td>
</tr>
<tr>
<td>Crème de menthe, 72 proof</td>
<td>1.5</td>
</tr>
<tr>
<td>Mixers</td>
<td></td>
</tr>
<tr>
<td>Club soda</td>
<td>12</td>
</tr>
<tr>
<td>Cola</td>
<td>12</td>
</tr>
<tr>
<td>Cranberry juice cocktail</td>
<td>4</td>
</tr>
<tr>
<td>Ginger ale or tonic water</td>
<td>12</td>
</tr>
<tr>
<td>Grapefruit juice</td>
<td>4</td>
</tr>
<tr>
<td>Orange juice</td>
<td>4</td>
</tr>
<tr>
<td>Tomato or vegetable juice</td>
<td>4</td>
</tr>
<tr>
<td>Wine</td>
<td></td>
</tr>
<tr>
<td>Champagne</td>
<td>5</td>
</tr>
<tr>
<td>Cooking</td>
<td>5</td>
</tr>
<tr>
<td>Dessert, dry</td>
<td>5</td>
</tr>
<tr>
<td>Dessert, sweet</td>
<td>5</td>
</tr>
<tr>
<td>Red or rosé</td>
<td>5</td>
</tr>
<tr>
<td>White</td>
<td>5</td>
</tr>
<tr>
<td>Wine cooler</td>
<td>10</td>
</tr>
</tbody>
</table>

Table H7-3, p. 236
Personal Strategies

- Serve and consume nonalcoholic beverages.
- Drink slowly
- Consume alcohol moderately
- Accompanied by food and water
- Do not drive
- Driving coordination is still impaired the morning after
End of Chapter 7
Metabolism